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Ho = 500 km / s / Mpc

1922 – Friedmann Showed that Einstein’s Equations have an 
expanding solution.

1929 – Hubble observed that 
Distance ∝ Redshift

In a HOMOGENEOUS Universe: Ho r = cz = c δλ / λ

Hubble Original data

The Expanding Universe
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1922 – Friedmann Showed that Einstein’s Equations have an 
expanding solution.

1929 – Hubble observed that 
Distance ∝ Redshift

In a HOMOGENEOUS Universe: Ho r = cz = c δλ / λ

Ho = 65 ± 15 km / s / Mpc

The Expanding Universe
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The solid line is for H0 = 72 km/s/Mpc 
with  the dashed lines representing ±10%

The Hubble Constant

Freedman etal, 2003
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Interference from the sun

Milkyway disc

Bright sources in the Milkyway

Is the Universe Homogeneous ?
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Is the Universe Homogeneous ?

LCRS, Sheckman etal, 1996
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2dF Redshift Survey

Is the Universe Homogeneous ?
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Is the Universe Homogeneous ?

2dF Redshift Survey
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Is the Universe Homogeneous ?
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CfA 3–D

Is the Universe Homogeneous ?
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Redshift Distortions
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Redshift Distortions
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Peculiar Velocity Field
Measure the line of sight peculiar velocities:

vp = cz – Hor

The difference between the redshift and the distance

The peculiar velocity field is dominated by large scales

Comparison of velocity fields & Luminous matter 
distribution       bias, Ω ...

Linear structure

Why should we study vp ?

Test of gravitational instability model !∇ · !V =
δρ

ρ
!∇× !V = 0

A direct probe of the mass distribution !V =
!∇φ
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A direct probe of the mass distribution !V =
!∇φ
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How to measure cosmological distances?
aka  The Cosmic Distance Ladder

A stepwise procedure: Errors proliferating
The idea:
Measure the apparent luminosity (l)
Find out absolute luminosity (L)

Get the distance 
l = L / 4π   2r
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• Find correlated observables:
Period – Luminosity   variable stars (Cepheids, RR-Lyr, …)

The Cosmic Ladder
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• Find correlated observables:
Period – Luminosity   variable stars (Cepheids, RR-Lyr, …)

The Cosmic Ladder

C – L – P Plane
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• Use variable stars to find distances to distant galaxies

• Find correlated observables:
Period – Luminosity   variable stars (Cepheids, RR-Lyr, …)

The Cosmic Ladder

• Tully – Fisher Spiral galaxies L ∝ vr4

• Find other correlated observables:
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Tully–Fisher
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Tully–Fisher

∆D =        relative difference 
between the distances of 
the two clusters

Abell 1367

Fornax cluster
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Tully–Fisher
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Tully–Fisher
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• Use variable stars to find distances to distant galaxies

• Find correlated observables:
Period – Luminosity   variable stars (Cepheids, RR-Lyr, …)

The Cosmic Ladder

Dn ∝ rc < I >
0.8

c

log Dn = 1.333 log σ + constant

• Tully – Fisher Spiral galaxies L ∝ vr4

• Dn – σ Elliptical galaxies L@Bi ∝ σv4

• Find other correlated observables:
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Dn − σ
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Dn − σ
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Dn − σ

Bernardi etal, 2003
SDSS
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Dn − σ

Bernardi etal, 2003
SDSS
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Dn − σ

Bernardi etal, 2003
SDSS

Measure of 
the mass
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• Use variable stars to find distances to distant galaxies

• Find correlated observables:
Period – Luminosity   variable stars (Cepheids, RR-Lyr, …)

The Cosmic Ladder

• Tully – Fisher Spiral galaxies L ∝ vr4

• Surface Brightness Fluctuations

• Dn – σ Elliptical galaxies L@Bi ∝ σv4

• Find other correlated observables:
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The Cosmic Ladder

Measure: flux per pixel fav
rms fluctuations in flux between pixels

Mean: fav ~ N f*av ~ d2 d–2 ~ constant

Variance: σ2 ~ N (f*av)2 ~ d–2

rms:  σ ~ d–1

Surface 
Brightness 

Fluctuations 
(SBF)

A galaxy twice as far is twice as smooth



  
35

• Use variable stars to find distances to distant galaxies

• Find correlated observables:
Period – Luminosity   variable stars (Cepheids, RR-Lyr, …)

The Cosmic Ladder

• Tully – Fisher Spiral galaxies L ∝ vr4

• Brightest Cluster Galaxy Metric luminosities

• Surface Brightness Fluctuations

• Dn – σ Elliptical galaxies L@Bi ∝ σv4

• Find other correlated observables:
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• Brightest Cluster Galaxy Metric luminosities

α ≡

dlog(Lm)

dlog(r)

∣
∣
∣
r10

The Cosmic Ladder
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• Tully – Fisher Spiral galaxies L ∝ vr4

• Supernaovae Type Ia Light Curve Shapes

• Brightest Cluster Galaxy Metric luminosities

• Surface Brightness Fluctuations

• Dn – σ Elliptical galaxies L@Bi ∝ σv4

• Find other correlated observables:

• Use variable stars to find distances to distant galaxies

• Find correlated observables:
Period – Luminosity   variable stars (Cepheids, RR-Lyr, …)

The Cosmic Ladder
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• Tully – Fisher Spiral galaxies L ∝ vr4

• Supernaovae Type Ia (SNIa) Light Curve Shapes

• Brightest Cluster Galaxy (BCG) Metric luminosities

• Surface Brightness Fluctuations

• Dn – σ Elliptical galaxies L@Bi ∝ σv4

• Find other correlated observables:

• Use variable stars to find distances to distant galaxies

• Find correlated observables:
Period – Luminosity   variable stars (Cepheids, RR-Lyr, …)

The Cosmic Ladder

α≡dlog(Lm)/dlog (r) |r10

• Sunayev–Zeldovich Effect (SZE)    Cluster distances
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SZ Effect
CMB photons Compton scatter on hot electrons in clusters.

Kinetic SZE: 
The bulk motion of the cluster red– or blue–shifts 

scattered γ 

Thermal SZE: 

The high T (keV) e– increase Eγ => non-thermal 
spectrum 
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Undistorted
CMBR

SZ Distorted
CMBR

SZ Effect

Carlstrom etal , 2002

Measure of 
optical depth

Measure of 
Comptonization
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SZ Effect

SZE Spectral Distortion of the CMBR due to 
hot ionized gas associated with a cluster of 
galaxies
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SZ Effect

Te− = 10kev y = 10
−4 vpec = 500km/s
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SZE (contours) and X-ray emission (colors) due to hot gas in 
cluster 0016+16 (z=0.5455) with                          . 

The cluster appears as a hole in the CMBR
Lcl ≈ 10

12
L!

SZ Effect

Carlstrom, 1997
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R

At great distances we cannot measure the distances accurately

e.g. At 10,000 km / s   (100 h-1 Mpc)
uncertainty of 10% → 1,000 km / s

We want to measure peculiar velocities of 
≤ 500 km / s

Combine data to find net motion of a volume

Beat down the error by √N

As R becomes large, expect vp→ 0

Test homogeneity 

To study the velocity field we first look at
Bulk Flows
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Applications

1975 –  Rubin & Ford: Sc Galaxies (Hor ≤ 10,000 km/s)

VLG ~ 550 km/s
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1976 – CMB Dipole: VLG ~ 620 km/s
1987 – 7 Samurai: Dn – σ (Hor ≤ 6,000 km/s)
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VACIF ~ 700 km/s  (Enormous attractor?)
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Applications

1975 –  Rubin & Ford: Sc Galaxies (Hor ≤ 10,000 km/s)

VLG ~ 550 km/s

1976 – CMB Dipole: VLG ~ 620 km/s
1987 – 7 Samurai: Dn – σ (Hor ≤ 6,000 km/s)

V7SIF ~ 550 km/s   (Great attractor!)

1993 – Lauer & Postman BCG (Hor ≤ 15,000 km/s)

VACIF ~ 700 km/s  (Enormous attractor?)

1993 – RPK SN Ia (Hor ≤ 10,000 km/s)

VSNIF ~ 400 km/s  (No attractor?)
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Local Group Velocity

VCMB 271o +29o 620 km / s

VLP 220o –28o 561 ± 284 km / s

VRPK 260o +54o 600 ± 350 km / s

Survey        l     b     vp

VSC 180o      0o 100 ± 150 km / s

VLP10k 173o +63o                 1000 ± 500 km / s

VSMAC 195o     0o 700 ± 250 km / s
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Hudson, 2003
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Strauss, 2000
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β ≡ Ω0.6 / b

β Strauss, 2000

Systematic effects

Nonlinear effects

Correlated Errors

Non-trivial biasing

Malmquist biases
standard candles 
calibration...
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Pairwise velocity Dispersion σ12

Zhao, Jing & Borner, 2002
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In large scale observations we look for

Estimators

We try to estimate an underlying quantity

Estimator = True quantity ⊗ Window function

e.g.

  
˜ p = N d3k

2π( )3 p
r 
k ( )W

r 
k ( )∫

??? What is going on ???
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˜ p = N d3k

2π( )3 p
r 
k ( )W

r 
k ( )∫
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Coffee
Break
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Mean Pairwise Velocity (v12)

“The tendency of galaxies to approach each other”

Are there any statistics that are consistent across surveys

For galaxies in intermediate scales 

v12 < 0

Far Galaxies (r12 > 30 Mpc)

No attraction ⇒ no correlations, v12 → 0

Close galaxies (e.g. within a cluster, r12 < 3 Mpc): 

Motion about the local center of mass, v12 = 0

HAF etal 2003 ApJL. 596 131L
Juszkiewicz etal 2000  Science, 287
Ferreira etal 1999, ApJL 515 L1
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Can we exploit the mean tendency of well–separated 
galaxies to approach each other to measure cosmological 

parameters ?

Different than the simple weighted 
average by ρ1ρ2 / ρ1ρ2

and ξ(r) =< δ1δ2 >

vi and δi = ρi/<ρ> – 1 are the peculiar velocities and the 
density contrast at a point ri : r = |!r1 − !r2|

!v12(r) =< !v1 − !v2 >ρ=
< (!v1 − !v2)(1 + δ1)(1 + δ2) >

1 + ξ(r)

Consider the dynamical evolution of a collection of particles 
interacting through gravity.

In the fluid limit the pair–density weighted relative velocity is:
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The magnitude v12(r) is related to the two-point correlation 
function ξ(r) through the pair conservation equation in 

gravitational instability theory.

α is a parameter that depends on the logarithmic slope 
of ξ(r)

v12(r) = −
2
3
H rΩ0.6 ξ (r) 1 +αξ (r)[ ] ,

ξ (r) =
3
r 3

ξ(x)x 2dx
0

r

∫ ≡ ξ (r) 1 +ξ(r)[ ]
(Juszkiewicz, Springel & Durrer, 

1998)

For models with Gaussian initial conditions the solution of the 
pair conservation equation is well approximated by:
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Instead use the mean  difference between the radial 
velocities of a pair of galaxies:

  
s1 − s2 p = v1 2 ˆ r ⋅ ˆ r 1 − ˆ r 2( ) / 2 where     r r = r r 1 −

r r 2
To estimate v12 we minimize the quantity

χ 2 (r) = sA − sB( ) − pAB ˜ v 1 2(r) / 2[ ]2
A, B
∑

pAB ≡ ˆ r ⋅ ˆ r A + ˆ r B( )
The sum is over all pairs with some fixed separation r.

We cannot estimate v12 directly since we only observe 
the line–of–sight component of the peculiar velocity:

sA =
!rA · !vA

r
≡ r̂A · !vA
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Mark III: 2437 spirals and 544 ellipticals 

SFI:        1300 late type spirals

ENEAR:  1359 Ellipticals

RFGC:     1327 Spirals

Standard linear bias model assumes: δg = b δ

The ratio of v12 from the elliptical and spiral samples is:

The estimates from the each of the catalogs are similar,

⇒ NO velocity bias

v12(E )

v12
(S ) =

bE
bS

= 1 ± 0.15
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The VELMOD (Willick etal 1997) analysis constrains 

β = Ω0.6 σ8       to be     β = 0.5 ± 0.05

From velocity – density using the Mark III and IRAS 1.2 
Jy.

Since the (Ω , σ8) dependence of v12 and β are different 
we may use both to break the degeneracy between Ω 

and σ8.

Results: Low density Universe

Ω < 0. 5

σ8 > 0.9



  
75



  
76

Optimal Moments for the Analysis of 
Peculiar Velocity Surveys

Hume A. Feldman
The University of Kansas

With

Rick Watkins

ApJ 564 534-541 2002

ApJ 599, 820–828 2003.

Removal of non linear effects, 
aliasing and incomplete 

cancellations

Karhunen–Loève / Fisher Matrix Formalism
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Likelihood Methods for Peculiar Velocities

The analysis of observed line–of–sight velocities:
N objects with positions ri and line–of–sight velocities vi.

The observed velocity: noise

Linear velocity 
field

vi = !v(!ri) · r̂i + δi

Rij
(v ) =

1
2π( )3

P(v )(k)Wij
2 (k)d3k∫

=
H2 f 2 Ω0( )
2π 2

P(k)Wij
2 (k)dk∫

The covariance matrix:

Rij =< vivj >= R
(v)
ij + δij(σ

2
i + σ

2
∗
)
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L v1,L, vN ;P(k)( ) = R−1 exp

−viRij
−1v j
2

 

  
 

  

Alternately, given a set of velocities (v1,…,vn)

⇒ L(v1,…,vN;P(k)) is the likelihood functional for the 
power spectrum.

Given a power spectrum parameterized by some vector

Θ = (θ1,…, θs)

⇒ L(v1,…,vN; Θ) is the likelihood functional for the 
parameter Θ.

The value of the parameter vector that maximizes the 
likelihood is ΘML

The probability distribution for the line–of–sight 
peculiar velocities:
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Define the Fisher Transformation matrix:

Fij =
∂ 2 − lnL( )
∂θ i∂θ j

Θ=Θ 0

The variances for an unbiased estimators are:

Δ θML( )i ≥ Fii( )−1/ 2 Cramér–Rao 
inequality

Here we assume that this limit is satisfied.

In the limit of large N this becomes an equality
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Data Compression

Replace N original line–of–sight velocities v1,…,vN 

with M moments u1,…,uM where M ≤ N.

Here we concentrate on linear data compression where the 
moments are:

ui = Bij vj

Bij is an M × N matrix .

If M < N ⇒ we lose information. 

We arrange it such that the lost information is primarily 
associated with small scales.

Karhunen–Loève methods: 
Kendall & Stuart (1969)
Tegmark, Taylor & Havens (1997)
Watkins etal 2002
HAF etal 2003
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u = bi vi.

Where bi is a 1 × N set of coefficients.

The Fisher matrix for the compressed data is: 

˜ F q q =
1
2

bi

∂Rij

∂θq

bj

2

Where bi Rij bj = 1

Since Δθq2 = 1 / Fqq we can find a moment that carries  
the minimum information about θq by minimizing the RHS.

Suppose we compress all the velocity information into a 
single moment.
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Introduce a Lagrange multiplier and extremize 
with respect to bi 

bi
∂Rij
∂θq

bj − λbiRijbj

Since Rij is symmetric and positive definite we can 
Cholesky decompose it:

Rij = Lik Ljk

For some invertible Matrix Lij.

Lki
−1 ∂Rij
∂θq

Llj
−1 

 
 

 

 
 Lmlbm( ) = λ Ljkbj( )

Eigenvalue problem:
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Solving this gives us a set of N orthogonal eigenvectors 
Lji(bn)j with corresponding eigenvalues λn.  

⇒ Finding λn gives us the error bar of θq 

The moments un are statistically independent, of unit variance:

⇒  If we convert the velocities into N moments there 
will be no loss of information and the 
transformation matrix will be invertible. 

Since the moments are statistically independent, when 
we compress the data by removing selected moments, 
the information contained by those moments will be 

completely removed from the data.

Eigenvector Lji(bn)j   ⇔      un = (bn)ivi  Moment
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Moment Selection

Order the moments in order of increasing eigenvalues:

λ1 ≤ λ2 ≤ ... ≤ λN

Each moment caries successively more information about 
θq with un caries the maximum possible amount of 

information.

Goal:

Produce a data set that is less sensitive to the value of θq and 

keep as many moments as possible to retain the information 
about large scales.
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1) Estimate θq = θqo

2) Keep the largest number M such that Δθq ≥ θqo.

The set of moments u1,…,uM will 
not contain enough information 
to distinguish θq from zero.

If our estimate of θq is correct

Criterion:
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Power Spectrum Model

Where contribution of nonlinear scales to line–of–sight 
velocity dispersion (σ*) should equal the estimate from 

the data.

Assume that:

P(k) = Pl(k) + θq Pnl(k)

Where Pl(k) = 0 for k > knl  Use the BBKS power spectrum for Pl(k).

We choose Pnl(k) = P0 for knl < k < kc.

Pnl(k) = 0 for k < knl           Try e.g. Pnl(k) ∝ k–1
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Window functions ranked by λ
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xy–plane

yz–plane

xz–plane

HAF, Hoffman  
& Nusser
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High 
density 
Regions

Low 
density 
Regions
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X = 1 + Ωoz + Λ ∗ (1 + z)−2
− 1

Where

+(1 + z)−1
X

−3/2
( ∫ 1+z)−1

0
X

−3/2
da

)
−1

f(Ωo, Λo, z) = X−1

(
Λo(1 + z)−2

−

1

2
Ωo(1 + z)

)
− 1

(
H

Ho

)2

= Ωo(1 + z)3 −
(
Ωo + Λo − 1

)
(1 + z)2 + Λo

Ω(Ωo, Λo, z) = Ωo

( H

Ho

)
−2

(1 + z)3

Cosmological Constant with velocity Fields
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Hflat

Hopen
=

(1 +
(Ω−1

o
−1)

1+z

1 +
(Ω−1

o
−1)

(1+z)3

)
−0.5

vflat

vopen
=

(1 +
(Ω−1

o
−1)

1+z

1 +
(Ω−1

o
−1)

(1+z)3

)0.1

fflat

fopen
=

(1 +
(Ω−1

o
−1)

1+z

1 +
(Ω−1

o
−1)

(1+z)3

)0.6
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• Distance measurements are good.

• Determination of Ho, Ω,  Λ, σ8, b, …

• Mapping of the Large–scale peculiar velocity field

• Study of the gravitational potential

• A ‘true’ tracer of the mass distribution

• We have some robust and consistent statistics

• We need:

• Deeper and denser surveys

• More accurate distance measurements

Concluding remarks

Velocity Fields Forever
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